Bài tập xét dấu tam thức bậc 2 năm 2024

Thầy cô giáo và các em học sinh có nhu cầu tải các tài liệu dưới dạng định dạng word có thể liên hệ đăng kí thành viên Vip của Website: tailieumontoan.com với giá 500 nghìn thời hạn tải trong vòng 6 tháng hoặc 800 nghìn trong thời hạn tải 1 năm. Chi tiết các thức thực hiện liên hệ qua số điện thoại (zalo ): 0393.732.038

Điện thoại: 039.373.2038 (zalo web cũng số này, các bạn có thể kết bạn, mình sẽ giúp đỡ)

Kênh Youtube: https://bitly.com.vn/7tq8dm

Email: [email protected]

Group Tài liệu toán đặc sắc: https://bit.ly/2MtVGKW

Page Tài liệu toán học: https://bit.ly/2VbEOwC

Website: http://tailieumontoan.com

Tài liệu gồm 30 trang, được biên soạn bởi thầy giáo Lê Bá Bảo, bao gồm tóm tắt lý thuyết, bài tập tự luận và bài tập trắc nghiệm (có đáp án và lời giải chi tiết) chủ đề dấu tam thức bậc hai trong chương trình Toán 10 Kết Nối Tri Thức Với Cuộc Sống (KNTTVCS).

  1. TÓM TẮT LÝ THUYẾT 1. Tam thức bậc hai. Tam thức bậc hai (đối với x) là biểu thức có dạng 2 ax bx c trong đó a b c là những số thực cho trước (với a 0), được gọi là các hệ số của tam thức bậc hai. Chú ý: +) Nghiệm của phương trình bậc hai 2 ax bx c 0 cũng được gọi là nghiệm của tam thức bậc hai 2 ax bx c. +) 2 b ac 4 và 2 b ac với b b 2 tương ứng được gọi là biệt thức và biệt thức thu gọn của tam thức bậc hai 2 ax bx c. 2. Định lý về dấu tam thức bậc hai. Cho tam thức bậc hai 2 f x ax bx c (với a 0). +) Nếu 0 thì f x cùng dấu với hệ số a với mọi x. +) Nếu 0 thì f x cùng dấu với hệ số a với mọi 2 b x a và 0. +) Nếu 0 thì tam thức f x có hai nghiệm phân biệt 1 x và 2 x x x 1 2. Khi đó f x cùng dấu với hệ số a với mọi x x x 1 2 f x trái dấu với hệ số a với mọi x x x 1 2. Chú ý. Trong định lí về dấu tam thức bậc hai có thể thay bởi. 3. Bất phương trình bậc hai. +) Bất phương trình bậc hai ẩn x là bất phương trình có dạng 2 ax bx c 0 (hoặc 2 ax bx c 0 2 ax bx c 0 2 ax bx c 0), trong đó abc là những số thực đã cho và a 0. +) Số thực 0 x gọi là một nghiệm của bất phương trình bậc hai 2 ax bx c 0 nếu 2 0 0 ax bx c 0. Tập hợp gồm tất cả các nghiệm của bất phương trình bậc hai 2 ax bx c 0 gọi là tập nghiệm của bất phương trình này. +) Giải bất phương trình bậc hai 2 f x ax bx c 0 là tìm tập nghiệm của nó, tức là tìm các khoảng mà trong đó f x cùng dấu với hệ số a (nếu a 0) hay trái dấu với hệ số a (nếu a 0). Để giải bất phương trình bậc hai 2 ax bx c 0 (hoặc 2 ax bx c 0 2 ax bx c 0 2 ax bx c 0) ta cần xét dấu tam thức 2 ax bx c từ đó suy ra tập nghiệm. II. BÀI TẬP TỰ LUẬN III. BÀI TẬP TRẮC NGHIỆM
  • Hàm Số - Đồ Thị Và Ứng Dụng

Ghi chú: Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên TOANMATH.com bằng cách gửi về: Facebook: TOÁN MATH Email: [email protected]

Trong đề thi THPT Quốc gia, các bạn học sinh rất dễ gặp dạng bài về tam thức bậc hai. Bài toán đòi hỏi các bạn cần nắm chắc định nghĩa, định lý để áp dụng vào bài thật dễ dàng. Vuihoc sẽ mang đến bài tổng hợp đầy đủ lý thuyết dấu của tam thức bậc hai và các bài tập ứng dụng.

1. Tam thức bậc hai là gì?

Tam thức bậc hai có dạng tổng quát là: f(x) =$ax^{2}+bx+c$.

Trong đó ta có x là biến.

a, b, c là các hệ số, với a≠0.

Ta có nghiệm của tam thức bậc hai là nghiệm của phương trình $ax^{2}+bx+c=0$.

Bài tập xét dấu tam thức bậc 2 năm 2024

2. Dấu của tam thức bậc hai

2.1. Định lý về dấu của tam thức bậc hai

Hàm số tam thức bậc hai dạng: f(x) =$ax^{2}+bx+c$ (a ≠ 0),

Δ =$b^{2}-4ac$.

  • Nếu Δ < 0 thì f(x) cùng dấu hệ số a, x ∈ R.
  • Nếu Δ = 0 thì f(x) có nghiệm kép x = $-\frac{b}{2a}$.
  • Nếu Δ > 0 thì f(x) có hai nghiệm phân biệt $x_{1}$ và $x_{2}$, cùng dấu với số a khi x < $x_{1}$ hoặc x > $x_{2}$, trái dấu hệ số a nếu $x_{1}$ < x < $x_{2}$.

2.2. Minh họa hình học

Định lý dấu tam thức bậc hai được minh họa bằng hình học như sau:

Bài tập xét dấu tam thức bậc 2 năm 2024

2.3. Ứng dụng

Ví dụ 1: Cho phương trình $(m^{2}-4)x^{2}+2(m+2)x+1=0$

Tìm m để phương trình có nghiệm.

Giải:

Bài tập xét dấu tam thức bậc 2 năm 2024

Ví dụ 2: Ta có phương trình $(m^{2}-4)x^{2}+2(m+2)x+1=0$

Để phương trình có nghiệm duy nhất thì m là?

Giải:

Để phương trình có nghiệm duy nhất, ta xét hai trường hợp sau:

Bài tập xét dấu tam thức bậc 2 năm 2024

3. Định lý thuận của tam thức bậc hai

Chúng ta có định lý thuận về dấu của tam thức bậc 2 là “Trong trái, ngoài cùng”.

Ta có:

Bài tập xét dấu tam thức bậc 2 năm 2024

Tham khảo ngay bộ tài liệu tổng hợp kiến thức và phương pháp giải mọi dạng bài tập độc quyền của VUIHOC

Bài tập xét dấu tam thức bậc 2 năm 2024

4. Định lý đảo tam thức bậc hai

Định lý đảo tam thức bậc hai có nội dung như sau:

Cho tam thức bậc hai có dạng là f(x) = $ax^{2}+bx+c (a\neq 0)$.

f(x) có hai nghiệm phân biệt $x_{1},x_{2}$ và $x_{1}$ < α < $x_{2}$, nếu số α thỏa mãn af(α) < 0

Bài tập xét dấu tam thức bậc 2 năm 2024

5. Các dạng tam thức bậc hai

5.1. So sánh nghiệm của tam thức với một số cho trước

Bài tập xét dấu tam thức bậc 2 năm 2024

5.2. So sánh nghiệm của tam thức với hai số cho trước $\alpha < \beta $

Bài tập xét dấu tam thức bậc 2 năm 2024

Phương trình có hai nghiệm phân biệt và chỉ một nghiệm thuộc (α;β) khi f(α).f(β) < 0

Bài tập xét dấu tam thức bậc 2 năm 2024

5.3. Chứng minh phương trình bậc hai có nghiệm

+ Phương trình có hai nghiệm phân biệt nếu có α sao cho af(α) < 0.

+ Phương trình f(x) = 0 có hai nghiệm phân biệt nếu có hai số α, β sao cho f(α).f(β) < 0 và a ≠ 0.

+ Nếu hai số α, β và f(α).f(β) < 0 thì phương trình f(x) = 0 có nghiệm.

5.4. Tìm điều kiện để tam thức bậc hai không đổi dấu trên R

Ta có:

Bài tập xét dấu tam thức bậc 2 năm 2024

Đăng ký ngay để được thầy cô tổng hợp kiến thức và xây dựng lộ trình ôn tập chuẩn bị sớm cho kì thi tốt nghiệp THPT

Bài tập xét dấu tam thức bậc 2 năm 2024

6. Các dạng bài tập giải chi tiết dạng dấu của tam thức bậc hai

Bài 1: Xét dấu tam thức bậc hai sau đây: f(x) =$5x^{2}-3x+1$.

Giải:

$\Delta =b^{2}-4ac=3^{2}-4.5.1=-11<0$

f(x) cùng dấu với hệ số a

Mà ta có a = 5 > 0

f(x)>0 $\forall x\in R$

Bài 2: Cho f(x) =$-2x^{2}+3x+5$, xét dấu tam thức bậc hai đã cho.

Giải:

$\Delta =b^{2}-4ac=3^{2}-4.(-2).5=49>0$

f(x) có hai nghiệm phân biệt với $x_{1}=-1,x_{2}=\frac{5}{2}$

Hệ số a = -2 < 0

Ta có bảng xét dấu:

Bài tập xét dấu tam thức bậc 2 năm 2024

Nhìn vào bảng xét dấu ta có:

f(x) > 0 khi $x\in (-1,\frac{5}{2})$

f(x) = 0 khi $x=\frac{-b}{2a}-1,x=\frac{c}{a}=\frac{5}{2}$

f(x) < 0 khi $x\in (-\infty ,-1)\cup (\frac{5}{2},+\infty )$

Bài 3: Cho bất phương trình $x^{2}-2x+3>0$, hãy giải bất phương trình.

Giải:

Vì bất phương trình gồm một tam thức bậc hai nên ta lập luôn được bảng xét dấu, ta có:

Bài tập xét dấu tam thức bậc 2 năm 2024

\=> Tập nghiệm của bất phương trình là R

Bài 4: Giải bất phương trình sau $x^{2}+9>6x$

Giải:

Ta biến đổi bất phương trình: $x^{2}+9-6x>0$

Bảng xét dấu:

Bài tập xét dấu tam thức bậc 2 năm 2024

\=> Tập nghiệm của bất phương trình là R⟍0

Bài 5: Cho f(x) = $6x^{2}-x-2\geq 0$. Hãy giải bất phương trình.

Giải:

Ta có bảng xét dấu vế trái:

Bài tập xét dấu tam thức bậc 2 năm 2024

<=> Vậy tập nghiệm $x< x_{1}$ hoặc $x>x_{2}$ => S=$(-\infty ,-\frac{1}{2})\cup [\frac{2}{3},+\infty )$

Bài 6: Cho phương trình f(x) =$(m-2)x^{2}+2(2m-3)x+5m-6=0$

Yêu cầu tìm m để phương trình trên vô nghiệm.

Bài tập xét dấu tam thức bậc 2 năm 2024

Bài 7: Hãy lập bảng xét dấu của biểu thức cho sau:

f(x) = $(3x^{2}-10x+3)(4x-5)$

Giải:

f(x) có hai nghiệm $x_{1}=\frac{1}{3},x_{2}=3$, có hệ số a = 3 > 0 nên mang dấu (+) nếu x <$\frac{1}{3}$ hoặc x > 3

Mang dấu (-) nếu $x_{1}

Nhị thức (4x-5) có nghiệm 4x=5 x = $\frac{5}{4}$

Ta có bảng xét dấu:

Bài tập xét dấu tam thức bậc 2 năm 2024

Từ bảng xét dấu ta kết luận:

f(x)>0 khi $x\in (\frac{1}{3},\frac{5}{4})\cup x\in (3,+\infty )$

f(x)=0 khi $x\in S=\left \{ \frac{1}{3},\frac{5}{4},3 \right \}$

f(x)<0 khi $x\in (-\infty ,\frac{1}{3})\cup (\frac{5}{4},3)$

PAS VUIHOC – GIẢI PHÁP ÔN LUYỆN CÁ NHÂN HÓA

Khóa học online ĐẦU TIÊN VÀ DUY NHẤT:

⭐ Xây dựng lộ trình học từ mất gốc đến 27+

⭐ Chọn thầy cô, lớp, môn học theo sở thích

⭐ Tương tác trực tiếp hai chiều cùng thầy cô

⭐ Học đi học lại đến khi nào hiểu bài thì thôi

⭐ Rèn tips tricks giúp tăng tốc thời gian làm đề

⭐ Tặng full bộ tài liệu độc quyền trong quá trình học tập

Đăng ký học thử miễn phí ngay!!

Bài tập xét dấu tam thức bậc 2 năm 2024

Trên đây là toàn bộ kiến thức và tổng hợp đầy đủ các dạng bài tập về dấu tam thức bậc hai. Hy vọng rằng sau khi đọc bài viết, các bạn học sinh có thể áp dụng công thức để giải các bài tập một cách dễ dàng. Để học và ôn tập kiến thức lớp 12 ôn thi Toán THPT Quốc gia, hãy truy cập Vuihoc.vn và đăng ký khóa học ngay từ hôm nay nhé!