Giải toán 10 bài 1 đại cương về phương trình năm 2024

- Điều kiện xác định của phương trình bao gồm các điều kiện để giá trị của \(f\left( x \right),\,\,g\left( x \right)\) cùng được xác định và các điều kiện khác (nếu có yêu cầu trong đề bài)

- Điều kiện để biểu thức

  • \(\sqrt {f\left( x \right)} \) xác định là \(f\left( x \right) \ge 0\)
  • \(\frac{1}{{f\left( x \right)}}\) xác định là \(f\left( x \right) \ne 0\)
  • \(\frac{1}{{\sqrt {f\left( x \right)} }}\) xác định là \(f\left( x \right) > 0\)

Ví dụ 1:

Tìm điều kiện xác định của phương trình sau:

  1. \(x + \frac{5}{{{x^2} - 4}} = 1\)
  1. \(1 + \sqrt {3 - x} = \sqrt {x - 2} \)

Hướng dẫn:

  1. Điều kiện xác định của phương trình là \({x^2} - 4 \ne 0 \Leftrightarrow {x^2} \ne 4 \Leftrightarrow x \ne \pm 2.\)
  1. Điều kiện xác định của phương trình là \(\left\{ {\begin{array}{*{20}{c}}{3 - x \ge 0}\\{x - 2 \ge 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \le 3}\\{x \ge 2}\end{array}} \right. \Leftrightarrow 2 \le x \le 3.\)

Ví dụ 2:

Tìm điều kiện xác định của phương trình sau rồi suy ra tập nghiệm của nó:

  1. \(4x + \sqrt {4x - 3} = 2\sqrt {3 - 4x} + 3\)
  1. \(\sqrt { - {x^2} + 6x - 9} + {x^3} = 27\)

Hướng dẫn:

  1. Điều kiện xác định của phương trình là\(\left\{ {\begin{array}{*{20}{c}}{4{\rm{x}} - 3 \ge 0}\\{3 - 4{\rm{x}} \ge 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \ge \frac{3}{4}}\\{x \le \frac{3}{4}}\end{array} \Leftrightarrow x = \frac{3}{4}} \right.\)

Thử vào phương trình thấy \(x = \frac{3}{4}\) thỏa mãn

Vậy tập nghiệp của phương trình là \({\rm{S}} = \left\{ {\frac{3}{4}} \right\}.\)

  1. Điều kiện xác định của phương trình là \( - {x^2} + 6x - 9 \ge 0 \Leftrightarrow - {\left( {x - 3} \right)^2} \ge 0 \Leftrightarrow x = 3\)

Thay \({\rm{x}} = 3\) vào thấy thỏa mãn phương trình

Vậy tập nghiệp của phương trình là \({\rm{S}} = \left\{ 3 \right\}.\)

DẠNG TOÁN 2: GIẢI PHƯƠNG TRÌNH BẰNG PHÉP BIẾN ĐỔI TƯƠNG ĐƯƠNG VÀ HỆ QUẢ

Phương pháp giải:

Để giải phương trình ta thực hiện các phép biến đổi để đưa về phương trình tương đương với phương trình đã cho đơn giản hơn trong việc giải nó. Một số phép biến đổi thường sử dụng

  • Cộng (trừ) cả hai vế của phương trình mà không làm thay đổi điều kiện xác định của phương trình ta thu được phương trình tương đương phương trình đã cho.
  • Nhân (chia) vào hai vế với một biểu thức khác không và không làm thay đổi điều kiện xác định của phương trình ta thu được phương trình tương đương với phương trình đã cho.
  • Bình phương hai vế của phương trình ta thu được phương trình hệ quả của phương trình đã cho.
  • Bình phương hai vế của phương trình(hai vế luôn cùng dấu) ta thu được phương trình tương đương với phương trình đã cho.

Ví dụ 3:

Tìm số nghiệm của các phương trình sau:

  1. \(1 + \frac{1}{{x - 3}} = \frac{5}{{{x^2} - x - 6}}\)
  1. \(\frac{{{x^2}}}{{\sqrt {x - 2} }} = \frac{1}{{\sqrt {x - 2} }} - \sqrt {x - 2} \)

Hướng dẫn:

  1. ĐKXĐ : \(\left\{ {\begin{array}{*{20}{c}}{x \ne 3}\\{{x^2} - x - 6 \ne 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \ne 3}\\{x \ne - 2}\end{array}} \right.\)

Với điều kiện đó phương trình tương đương với

\(1 + \frac{1}{{x - 3}} = \frac{5}{{\left( {x - 3} \right)\left( {x + 2} \right)}} \Leftrightarrow \left( {x - 3} \right)\left( {x + 2} \right) + x + 2 = 5\)

\( \Leftrightarrow {x^2} = 9 \Leftrightarrow x = \pm 3\)

Đối chiếu với điều kiện ta có nghiệm của phương trình là \({\rm{x}} = - 3\).

  1. ĐKXĐ: \({\rm{x}} > 2\)

Với điều kiện đó phương trình tương đương với

\({x^2} = 1 - \left( {x - 2} \right) \Leftrightarrow {x^2} + x - 3 = 0 \Leftrightarrow x = \frac{{ - 1 \pm \sqrt {13} }}{2}\)

Đối chiếu với điều kiện ta thấy không có giá trị nào thỏa mãn

Vậy phương trình vô nghiệm.

Ví dụ 2:

Tìm \(m\) để cặp phương trình sau tương đương

\(m{x^2} - 2\left( {m - 1} \right)x + m - 2 = 0\) (1) và \(\left( {m - 2} \right){x^2} - 3x + {m^2} - 15 = 0\) (2)

Hướng dẫn:

Giả sử hai phương trình (1) và (2) tương đương

Ta có \(\left( 1 \right) \Leftrightarrow \left( {x - 1} \right)\left( {mx - m + 2} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{mx - m + 2 = 0}\end{array}} \right.\)

Do hai phương trình tương đương nên \(x = 1\) là nghiệm của phương trình (2)

Thay \(x = 1\) vào phương trình (2) ta được

\(\left( {m - 2} \right) - 3 + {m^2} - 15 = 0 \Leftrightarrow {m^2} + m - 20 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 4}\\{m = - 5}\end{array}} \right.\)

  • Với \(m = - 5\) : Phương trình (1) trở thành \( - 5{x^2} + 12x - 7 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = \frac{7}{5}}\end{array}} \right.\)

Phương trình (2) trở thành \( - 7{x^2} - 3x + 10 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = - \frac{{10}}{7}}\end{array}} \right.\)

Suy ra hai phương trình không tương đương

  • Với \(m = 4\) : Phương trình (1) trở thành \(4{x^2} - 6x + 2 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{1}{2}}\\{x = 1}\end{array}} \right.\)

Phương trình (2) trở thành \(2{x^2} - 3x + 1 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = \frac{1}{2}}\end{array}} \right.\)