Bài 47 trang 59 sbt toán 9 tập 2

\(\begin{array}{l}A\left( x \right).B\left( x \right).C\left( x \right) = 0\\\Leftrightarrow \left[ \begin{array}{l}A\left( x \right) = 0\\B\left( x \right) = 0\\C\left( x \right) = 0\end{array} \right.\end{array}\)
Lựa chọn câu để xem lời giải nhanh hơn
  • LG a
  • LG b
  • LG c
  • LG d
  • LG e
  • LG f

Giải các phương trình sau bằng cách đưa về phương trình tích:

LG a

\(3{x^3} + 6{x^2} - 4x = 0\)

Phương pháp giải:

* Chuyển tất cả các hạng tử về vế trái, sau đó đặt nhân tử chung để đưa phương trình về dạng phương trình tích.

\(\begin{array}{l}
A\left( x \right).B\left( x \right).C\left( x \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
A\left( x \right) = 0\\
B\left( x \right) = 0\\
C\left( x \right) = 0
\end{array} \right.
\end{array}\)

* Phương trình \(a{x^2} + bx + c = 0\;(a \ne 0)\)và biệt thức \(\Delta' = {b'^2} - ac\):

+) Nếu \(\Delta' > 0\)thì phương trình có hai nghiệm phân biệt:

\({x_1}\)=\(\dfrac{-b' + \sqrt{\bigtriangleup' }}{a}\) và \({x_2}\)= \(\dfrac{-b' - \sqrt{\bigtriangleup' }}{a}\)

+) Nếu \(\Delta' = 0\) thì phương trình có nghiệm kép \({x_1}={x_2}=\dfrac{-b' }{a}\).

+) Nếu \(\Delta' < 0\)thì phương trình vô nghiệm.

Lời giải chi tiết:

\(3{x^3} + 6{x^2} - 4x = 0 \)

\(\Leftrightarrow x\left( {3{x^2} + 6x - 4} \right) = 0\)

\(\Leftrightarrowx = 0\) hoặc\(3{x^2} + 6x - 4 = 0\)

Giải phương trình \( 3{x^2} + 6x - 4 = 0 \)

\( \Delta ' = {3^2} - 3.\left( { - 4} \right) = 9 + 12 = 21 > 0 \)

\( \sqrt {\Delta '} = \sqrt {21} \)

\(\displaystyle {x_1} = {{ - 3 + \sqrt {21} } \over 3};{x_2} = {{ - 3 - \sqrt {21} } \over 3} \)

Vậy phương trình đã cho có ba nghiệm: \(\displaystyle {x_1} = {{ - 3 + \sqrt {21} } \over 3};{x_2} = {{ - 3 - \sqrt {21} } \over 3}\); \({x_3} = 0.\)

LG b

\({\left( {x + 1} \right)^3} - x + 1 = \left( {x - 1} \right)\left( {x - 2} \right)\)

Phương pháp giải:

- Chuyển tất cả các hạng tử về vế trái, sau đó đặt nhân tử chung để đưa phương trình về dạng phương trình tích.

\(\begin{array}{l}
A\left( x \right).B\left( x \right).C\left( x \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
A\left( x \right) = 0\\
B\left( x \right) = 0\\
C\left( x \right) = 0
\end{array} \right.
\end{array}\)

- Phương trình \(a{x^2} + bx + c = 0\;(a \ne 0)\)và biệt thức \(\Delta' = {b'^2} - ac\):

+) Nếu \(\Delta' > 0\)thì phương trình có hai nghiệm phân biệt:

\({x_1}\)=\(\dfrac{-b' + \sqrt{\bigtriangleup' }}{a}\) và \({x_2}\)= \(\dfrac{-b' - \sqrt{\bigtriangleup' }}{a}\)

+) Nếu \(\Delta' = 0\) thì phương trình có nghiệm kép \({x_1}={x_2}=\dfrac{-b' }{a}\).

+) Nếu \(\Delta' < 0\)thì phương trình vô nghiệm.

Lời giải chi tiết:

\({\left( {x + 1} \right)^3} - x + 1 = \left( {x - 1} \right)\left( {x - 2} \right) \)

\( \Leftrightarrow {x^3} + 3{x^2} + 3x + 1 - x + 1 = {x^2} \)\(\,- 2x - x + 2 \)

\(\Leftrightarrow {x^3} + 2{x^2} + 5x = 0 \)

\( \Leftrightarrow x\left( {{x^2} + 2x + 5} \right) = 0 \)

\( \Leftrightarrow x = 0 \) hoặc\({x^2} + 2x + 5 = 0\)

Giải phương trình \( {x^2} + 2x + 5 = 0 \) (*)

\(\Delta ' = 1 - 1.5 = 1 - 5 = - 4 < 0 \)

Phương trình (*) vô nghiệm.

Vậy phương trình đã cho có một nghiệm \(x = 0\).

LG c

\({\left( {{x^2} + x + 1} \right)^2} = {\left( {4x - 1} \right)^2}\)

Phương pháp giải:

- Chuyển tất cả các hạng tử về vế trái, sau đó đặt nhân tử chung để đưa phương trình về dạng phương trình tích.

\(\begin{array}{l}
A\left( x \right).B\left( x \right).C\left( x \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
A\left( x \right) = 0\\
B\left( x \right) = 0\\
C\left( x \right) = 0
\end{array} \right.
\end{array}\)

* Sử dụng:

- Nếu phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\)có \(a + b + c = 0\) thì phương trình có một nghiệm \({x_1}= 1\), còn nghiệm kia là \({x_2}=\dfrac{c}{a}.\)

- Nếu phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) có \(a - b + c = 0\) thì phương trình có nghiệm là \({x_1}= -1\), còn nghiệm kia là \({x_2}=\dfrac{-c}{a}\).

Lời giải chi tiết:

\({\left( {{x^2} + x + 1} \right)^2} = {\left( {4x - 1} \right)^2} \)

\( \Leftrightarrow {\left( {{x^2} + x + 1} \right)^2} - {\left( {4x - 1} \right)^2} = 0 \)

\(\Leftrightarrow {\rm{[(}}{x^2} + x + 1) + (4x - 1){\rm{]}}.{\rm{[(}}{x^2} + x \)\(\,+ 1) - (4x - 1){\rm{]}} = 0\)

\( \Leftrightarrow ( {x^2} + x + 1 + 4x - 1)({x^2} + x + 1\)\(\, - 4x + 1) = 0 \)

\( \Leftrightarrow \left( {{x^2} + 5x} \right)\left( {{x^2} - 3x + 2} \right) = 0 \)

\(\Leftrightarrow x\left( {x + 5} \right)\left( {{x^2} - 3x + 2} \right) = 0 \)

\( \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x + 5 = 0\\
{x^2} - 3x + 2 = 0
\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x = - 5\\
{x^2} - 3x + 2 = 0
\end{array} \right.\)

Giải phương trình \({x^2} - 3x + 2 = 0\) (2*)

Ta có \(a + b + c = 0=1 + \left( { - 3} \right) + 2 = 0\)

Phương trình (2*) có hai nghiệm: \({x_3} = 1;{x_4} = 2\).

Vậy phương trình đã cho có \(4\) nghiệm: \({x_1} = 0;{x_2} = - 5;{x_3} = 1;{x_4} = 2\).

LG d

\({\left( {{x^2} + 3x + 2} \right)^2} = 6\left( {{x^2} + 3x + 2} \right)\)

Phương pháp giải:

- Chuyển tất cả các hạng tử về vế trái, sau đó đặt nhân tử chung để đưa phương trình về dạng phương trình tích.

\(\begin{array}{l}
A\left( x \right).B\left( x \right).C\left( x \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
A\left( x \right) = 0\\
B\left( x \right) = 0\\
C\left( x \right) = 0
\end{array} \right.
\end{array}\)

* Sử dụng:

- Nếu phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\)có \(a + b + c = 0\) thì phương trình có một nghiệm \({x_1}= 1\), còn nghiệm kia là \({x_2}=\dfrac{c}{a}.\)

- Nếu phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) có \(a - b + c = 0\) thì phương trình có nghiệm là \({x_1}= -1\), còn nghiệm kia là \({x_2}=\dfrac{-c}{a}\).

Lời giải chi tiết:

\({\left( {{x^2} + 3x + 2} \right)^2} = 6\left( {{x^2} + 3x + 2} \right) \)

\(\Leftrightarrow {\left( {{x^2} + 3x + 2} \right)^2} - 6\left( {{x^2} + 3x + 2} \right)\)\(\, = 0 \)

\( \Leftrightarrow \left( {{x^2} + 3x + 2} \right)\left[ {\left( {{x^2} + 3x + 2} \right) - 6} \right]\)\(\, = 0 \)

\( \Leftrightarrow \left( {{x^2} + 3x + 2} \right)\left( {{x^2} + 3x - 4} \right) = 0 \)

\( \Leftrightarrow \left[ {\matrix{
{{x^2} + 3x + 2 = 0} \cr
{{x^2} + 3x - 4 = 0} \cr} } \right. \)

Giải phương trình \({x^2} + 3x + 2 = 0\) (3*) có \(a - b + c=1 - 3 + 2 = 0\)

Phương trình (3*) có hai nghiệm: \({x_1} = - 1;{x_2} = - 2 \)

Giải phương trình \({x^2} + 3x - 4 = 0\) (4*) có \(a + b + c = 1 + 3 + \left( { - 4} \right) = 0 \)

Phương trình (4*) có hai nghiệm: \({x_3} = 1;{x_4} = - 4 \).

Vậy phương trình đã cho có \(4\) nghiệm: \({x_1} = - 1;{x_2} = - 2;{x_3} = 1;{x_4} = - 4\).

LG e

\({\left( {2{x^2} + 3} \right)^2} - 10{x^3} - 15x = 0\)

Phương pháp giải:

- Chuyển tất cả các hạng tử về vế trái, sau đó đặt nhân tử chung để đưa phương trình về dạng phương trình tích.

\(\begin{array}{l}
A\left( x \right).B\left( x \right).C\left( x \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
A\left( x \right) = 0\\
B\left( x \right) = 0\\
C\left( x \right) = 0
\end{array} \right.
\end{array}\)

* Sử dụng:

- Nếu phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\)có \(a + b + c = 0\) thì phương trình có một nghiệm \({x_1}= 1\), còn nghiệm kia là \({x_2}=\dfrac{c}{a}.\)

- Nếu phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) có \(a - b + c = 0\) thì phương trình có nghiệm là \({x_1}= -1\), còn nghiệm kia là \({x_2}=\dfrac{-c}{a}\).

Lời giải chi tiết:

\({\left( {2{x^2} + 3} \right)^2} - 10{x^3} - 15x = 0 \)

\( \Leftrightarrow {\left( {2{x^2} + 3} \right)^2} - 5x\left( {2{x^2} + 3} \right) = 0 \)

\( \Leftrightarrow \left( {2{x^2} + 3} \right)\left( {2{x^2} + 3 - 5x} \right) = 0 \)

Ta có: \( 2{x^2} \ge 0 \Rightarrow 2{x^2} + 3 > 0 \)

Do đó \(\left( {2{x^2} + 3} \right)\left( {2{x^2} + 3 - 5x} \right) = 0 \)

\( \Leftrightarrow2{x^2} - 5x + 3 = 0 \)

Giải phương trình \(2{x^2} - 5x + 3 = 0 \) (5*) có \(a + b + c = 2 + \left( { - 5} \right) + 3 = 0 \)

Phương trình (5*) có hai nghiệm \( \displaystyle {x_1} = 1;{x_2} = {3 \over 2} \)

Vậy phương trình đã cho có \(2\) nghiệm:\({x_1} = 1;{x_2} = \displaystyle {3 \over 2}\).

LG f

\({x^3} - 5{x^2} - x + 5 = 0\)

Phương pháp giải:

- Chuyển tất cả các hạng tử về vế trái, sau đó đặt nhân tử chung để đưa phương trình về dạng phương trình tích.

\(\begin{array}{l}
A\left( x \right).B\left( x \right).C\left( x \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
A\left( x \right) = 0\\
B\left( x \right) = 0\\
C\left( x \right) = 0
\end{array} \right.
\end{array}\)

Lời giải chi tiết:

\({x^3} - 5{x^2} - x + 5 = 0 \)

\( \Leftrightarrow {x^2}\left( {x - 5} \right) - \left( {x - 5} \right) = 0 \)

\( \Leftrightarrow \left( {x - 5} \right)\left( {{x^2} - 1} \right) = 0 \)

\( \Leftrightarrow \left( {x - 5} \right)\left( {x - 1} \right)\left( {x + 1} \right) = 0 \)

\( \Leftrightarrow\left[ {\matrix{
{x - 5 = 0} \cr
{x + 1 = 0} \cr
{x - 1 = 0} \cr} \Leftrightarrow \left[ {\matrix{
{x = 5} \cr
{x = - 1} \cr
{x = 1} \cr} } \right.} \right. \)

Vậy phương trình đã cho có ba nghiệm:\({x_1} = 5;{x_2} = - 1;{x_3} = 1\).