Bài tập lớn đạo hàm hợp rđạo hàm vhamf ân năm 2024

Hàm nhiều biến số có ứng dụng rất rộng rãi trong các bài toán học máy vì đa số các các thuộc tính của hiện tượng ta theo dõi không phải chỉ có 1 mà rất nhiều tham số. Các tham số này được liên kết với nhau một cách đặc biệt bởi các hàm số khác nhau để có thể đưa ra được các kết quả mong muốn. Nên việc tìm hiểu về hàm nhiều biến là rất cần thiết để có thể hiểu được các lý thuyết của học máy. Trong bài viết này tôi sẽ tóm tắt lại đôi chút về hàm nhiều biến và đạo hàm của chúng chứ không đi sâu vào các vấn đề khác của hàm nhiều biến.

Mục lục

1. Hàm nhiều biến số

Là một hàm số có nhiều biến số từ một tập xác định nào đó và cho ra kết quả là một số thực. $$ \mathsf{D} \subset \mathbb{R}^n, f: \mathsf{D} \mapsto \mathbb{R} $$ Hay: $$ (x_1, x_2, …, x_n) \mapsto f(x_1, x_2, …, x_n) \in \mathbb{R} $$

Hay biểu diễn dưới dạng véc-tơ: $$ [x]_n \in \mathbb{R}^n \mapsto f(x) \in \mathbb{R} $$

Ví dụ, cho $ x, y \in \mathbb{R} $ và khi đó ánh xạ $ z = f(x, y) = x^2 + y^2 $ gọi là hàm số của biến $ x, y $.

Khi làm việc với các bài toán học máy đầu ra của ta có thể không phải là một số mà là 1 tập các số nên ta thường xuyên phải làm việc với các hàm nhiều biến dạng mở rộng kiểu này. Tập các số đầu ra này ta có thể biểu diễn dưới dạng một véc-tơ, hay nói cách khác hàm nhiều biến của ta sẽ cho kết quả là một véc-tơ. Những hàm như vậy được gọi là hàm véc-tơ $ f: \mathbb{R}^n \mapsto \mathbb{R}^m $. Ví dụ: $$ f(x, y) = \begin{bmatrix} x^2 + \sin(y) \cr 2xy + y^2 \end{bmatrix} $$

Để tiện giải thích và minh hoạ, trong bài này tôi sẽ đề cập tới trường hợp hàm của ta có 2 biến số. Tuy nhiên các tính chất, phép toán và phương pháp làm việc có thể mở rộng ra cho các hàm nhiều biến số hơn.

2. Đạo hàm riêng

Đạo hàm riêng theo 1 biến của một hàm số là đạo hàm theo biến đó với giả thuyết rằng các biến khác là hằng số. Cụ thể, cho hàm số $ f(x, y) $ và một điểm $ M(x_0, y_0) $ thuộc tập xác định của hàm, khi đó đạo hàm theo biến $ x $ tạo điểm $ M $ được gọi là đạo hàm riêng của $ f $ theo $ x $ tại $ M $. Lúc này $ y $ sẽ được cố định bằng giá trị $ y_0 $ và hàm của ta có thể coi là hàm 1 biến của biến $ x $.

Đạo hàm riêng của $ f $ theo $ x $ lúc này sẽ được kí hiệu là: $ f_x^{\prime}(x_0, y_0) $ hoặc $\displaystyle \frac{\partial{f(x_0, y_0)}}{\partial{x}} $, còn đạo hàm theo biến $ y $ được biểu diễn tương tự: $ f_y^{\prime}(x_0, y_0) $ hoặc $\displaystyle \frac{\partial{f(x_0, y_0)}}{\partial{y}} $.

Với tôi thì tôi thích biểu diễn dưới dạng $ f_x^{\prime} $ vì dễ nhìn và không bị nhầm lẫn với phân số.

Ví dụ: $ f(x, y) = x^2y + \sin(y) $ sẽ có đạo hàm $ f_x^{\prime} = 2xy $ và $ f_y^{\prime} = x^2 + \cos(y) $.

Còn $\displaystyle f(x, y) = \begin{bmatrix} x^2 + \sin(y) \cr 2xy + y^2 \end{bmatrix} $ có đạo hàm là $\displaystyle f_x^{\prime} = \begin{bmatrix} 2x & 2y \end{bmatrix} $ và $\displaystyle f_y^{\prime} = \begin{bmatrix} \cos(y) & 2x + 2y \end{bmatrix} $

Một cách hình thức đạo hàm riêng tại điểm $ M(x_0, y_0) $ theo biến $ x $ được tính toán như sau:

$$ f_x^{\prime}(x_0, y_0) = \lim\limits_{\triangle_x \rightarrow 0} \frac{\triangle_xf}{\triangle_x} = \lim\limits_{\triangle_x \rightarrow 0} \frac{f(x_0 + \triangle_x, y_0) - f(x_0, y_0)}{\triangle_x} $$

Theo biến $ y $:

$$ f_y^{\prime}(x_0, y_0) = \lim\limits_{\triangle_y \rightarrow 0} \frac{\triangle_yf}{\triangle_y} = \lim\limits_{\triangle_y \rightarrow 0} \frac{f(x_0, y_0 + \triangle_y) - f(x_0, y_0)}{\triangle_y} $$

Ở công thức trên $ \triangle_xf, \triangle_yf $ được gọi là số gia riêng của $ f $ tại $ M(x_0, y_0) $ lần lượt theo biến $ x, y $.

Trong phần này, ta cần lưu ý tới đạo hàm riêng của hàm véc-tơ nhé. Như vừa đề cập ở ví dụ trên, đạo hàm riêng của hàm véc-tơ sẽ là một véc-tơ hàng có cùng số chiều véc-tơ giá trị (véc-tơ đầu ra). Giả sử, ta có véc-tơ đơn vị $ \overrightarrow{u}(\text{\{i}}, \text{\{j}}) $ và một hàm véc-tơ $ \overrightarrow{v(t)} = f(t)\text{\{i}} + g(t)\text{\{j}} $ thì khi đó đạo hàm của nó sẽ là véc-tơ: $ \overrightarrow{v^{\prime}} = f^{\prime}(t)\text{\{i}} + g{\prime}(t)\text{\^{j}} $.

Trường hợp tổng quát với hàm có nhiều biến thì đạo hàm riêng theo 1 biến nào đó một cách tương tự như trên là đạo hàm theo biến đó với giả thuyết tất cả các biến còn lại là hằng số.

3. Đạo hàm cấp cao

Đạo hàm có thể được gắn cấp bậc để phân biệt chúng với nhau, đạo hàm của hàm số gốc được coi là đạo hàm cấp 1, đạo hàm của đạo hàm cấp 1 được coi là đạo hàm cấp 2,…

Ví dụ, ta có hàm số $ f(x, y) = x^2y + y^2 $ thì đạo hàm cấp 1 của nó là: $$ \begin{cases} \displaystyle{u_x^{\prime} = -\frac{f_x^{\prime}}{f_u^{\prime}}} \cr\cr \displaystyle{u_y^{\prime} = -\frac{f_y^{\prime}}{f_u^{\prime}}} \end{cases} $$

1.5. Đạo hàm của hàm hợp 1.5.1. Trường hợp: hàm số z = f (x, y), trong đó x = x(t), y = y(t) (t ∈ (a, b)) 1.5.2. Trường hợp: hàm số z = f (u, v), trong đó u = u(x, y), v = v(x, y) 1.6. Đạo hàm theo hướng 1.6.1. Bài toán thực tế 1.6.2. Ý nghĩa hình học của đạo hàm theo hướng 1.6.3. Định nghĩa đạo hàm theo hướng 1.6.4. Véc-tơ Gradient 1.6.5. Giá trị lớn nhất và nhỏ nhất của đạo hàm theo hướng

Đạo hàm của hàm hợp

Trường hợp: hàm số z = f (x, y), trong đó x = x(t), y = y(t) (t ∈ (a, b))

Trường hợp: hàm số z = f (u, v), trong đó u = u(x, y), v = v(x, y)

Đạo hàm theo hướng

Bài toán thực tế

Hình 1.10: Đường đẳng trị của hàm nhiệt độ T (x, y)

Định nghĩa đạo hàm theo hướng

Hình 1.12: Véc tơ đơn vị u

Véc-tơ Gradient

Giá trị lớn nhất và nhỏ nhất của đạo hàm theo hướng