Which layer of the osi reference model provide for internetwork connectivity?

Which layer of the osi reference model provide for internetwork connectivity?

The OSI Model Defined, Explained, and Explored

Which layer of the osi reference model provide for internetwork connectivity?

The OSI Model Defined

The OSI Model (Open Systems Interconnection Model) is a conceptual framework used to describe the functions of a networking system. The OSI model characterizes computing functions into a universal set of rules and requirements in order to support interoperability between different products and software. In the OSI reference model, the communications between a computing system are split into seven different abstraction layers: Physical, Data Link, Network, Transport, Session, Presentation, and Application.

Created at a time when network computing was in its infancy, the OSI was published in 1984 by the International Organization for Standardization (ISO). Though it does not always map directly to specific systems, the OSI Model is still used today as a means to describe Network Architecture.

Protect Your Network Layers with Forcepoint NGFW

The 7 Layers of the OSI Model

Physical Layer

The lowest layer of the OSI Model is concerned with electrically or optically transmitting raw unstructured data bits across the network from the physical layer of the sending device to the physical layer of the receiving device. It can include specifications such as voltages, pin layout, cabling, and radio frequencies. At the physical layer, one might find “physical” resources such as network hubs, cabling, repeaters, network adapters or modems.

At the data link layer, directly connected nodes are used to perform node-to-node data transfer where data is packaged into frames. The data link layer also corrects errors that may have occurred at the physical layer.

The data link layer encompasses two sub-layers of its own. The first, media access control (MAC), provides flow control and multiplexing for device transmissions over a network. The second, the logical link control (LLC), provides flow and error control over the physical medium as well as identifies line protocols.

Network Layer

The network layer is responsible for receiving frames from the data link layer, and delivering them to their intended destinations among based on the addresses contained inside the frame. The network layer finds the destination by using logical addresses, such as IP (internet protocol). At this layer, routers are a crucial component used to quite literally route information where it needs to go between networks.

Transport Layer

The transport layer manages the delivery and error checking of data packets. It regulates the size, sequencing, and ultimately the transfer of data between systems and hosts. One of the most common examples of the transport layer is TCP or the Transmission Control Protocol.

Session Layer

The session layer controls the conversations between different computers. A session or connection between machines is set up, managed, and termined at layer 5. Session layer services also include authentication and reconnections.

Presentation Layer

The presentation layer formats or translates data for the application layer based on the syntax or semantics that the application accepts. Because of this, it at times also called the syntax layer. This layer can also handle the encryption and decryption required by the application layer.

Application Layer

At this layer, both the end user and the application layer interact directly with the software application. This layer sees network services provided to end-user applications such as a web browser or Office 365. The application layer identifies communication partners, resource availability, and synchronizes communication.

Related

The Importance for Network Security

The OSI model takes a complex system and breaks it into several discrete layers based upon the various tasks fulfilled by networking protocols. This abstraction makes it easier to troubleshoot issues, identify security risks, and describe network-layer attacks.

As a theoretical model, the OSI model is not necessary for modern networking protocols to operate. However, it does make it easier to identify security risks and analyze the capabilities of cybersecurity solutions, making it an invaluable tool for network security.

7 Layers of OSI Model

The OSI model is broken up into seven layers. Each layer fulfills an important role within the networking stack and communicates with other layers by exchanging protocol data units (PDUs).

The layers in the OSI model are commonly referred to by name or number (1-7). From lowest-level to highest-level they are:

#1. The Physical Layer

The physical layer is where the raw bitstream is physically transmitted over a physical medium. The Layer 1 PDU is the “symbol”. This includes translating bits to electricity, light, or radio signals and controlling the rates at which they are sent over the chosen medium.

The data link layer breaks data to be transmitted into frames for transmission at the physical layer. It also manages connections between two different nodes, including setting up the connection, identifying and correcting any bit errors that occur at the physical layer, and terminating the connection once the session is complete.

#3. The Network Layer

At the network layer, the focus expands from a point-to-point link to include many interconnected nodes within a network. Network-layer devices operate on packets and are responsible for routing traffic to its destination based on IP addresses. 

#4. The Transport Layer

The transport layer is the first of four “host” layers with the rest referred to as “media” layers. The transport layer PDU is the “segment” or “datagram”. This layer manages the transmission of data between nodes, including ensuring that data arrives in the correct sequence and that any errors are corrected. The Transmission Control Protocol (TCP) operates at Layer 4

#5. The Session Layer

The session layer manages sessions between nodes and acts on the “data” PDU. Session management includes setup, authentication, termination, and reconnections.

#6. The Presentation Layer

The presentation layer is primarily responsible for translating data from network data to the formats expected by an application. For example, data encodings and encryption are managed at Layer 6.

#7. The Application Layer

The application layer includes protocols designed for end-users. For example, HTTP is a Layer 7 protocol designed to transmit data between a web server and a client.

Network Layers: OSI vs TCP/IP

The OSI model is only one networking model. Another is the TCP/IP model, which predates the OSI model and maps more closely to the protocols that implement the networking stack.

The TCP/IP model breaks the network stack into four layers:

  • Application Layer: This single layer maps to the Application, Presentation, and Session layers of the OSI model. Some protocols that operate at this layer include HTTP, SMTP, and DNS.
  • Transport Layer: This layer maps to the Transport layer of the OSI model. TCP and the User Datagram Protocol (UDP) operate at this layer.
  • Internet Layer: The Internet layer is equivalent to the Network Layer in the OSI model. This layer is primarily covered by the Internet Protocol (IP), but ARP, IGMP, and ICMP also operate at this layer.
  • Network Access Layer: This layer combines the Physical and Data Link layers from the OSI model. Ethernet, Token Ring, ATM, and Frame Relay are examples from the TCP/IP Protocol Suite that operate at this layer.

The OSI model is more theoretical, describing the various tasks that must be accomplished to enable application-layer data to be transmitted via electricity, light, or radio waves. The TCP/IP model is more practical and maps closely to actual network protocols.

Advantages of the OSI Model

OSI provides a mental model for how networking works, including describing all of the various functions that are performed to make network communications possible. This model makes it easier to troubleshoot issues with network protocols, to examine the security of networking protocols, and discuss various network-level attacks.

Check Point Solutions and the OSI Model

Network attacks can occur at varying levels of the OSI model. For example, Distributed Denial of Service (DDoS) attacks can attempt to exhaust network bandwidth (layers 3/4) or overwhelm a particular application with more requests than it can handle (layer 7).

An enterprise network security architecture should have the ability to view and analyze data at all of the “host” layers (4-7) of the OSI model. To learn more about expanding your organization’s network visibility through the OSI model, you’re welcome to request a free demo of Check Point Quantum Network Security.

What protocol S is used at the network layer?

This layer, also known as the network layer, accepts and delivers packets for the network. It includes the powerful Internet protocol (IP), the Address Resolution Protocol (ARP) protocol, and the Internet Control Message Protocol (ICMP) protocol.

At which layer S of the OSI model does Ethernet operate?

The OSI physical layer provides the means to transport the bits that make up a data link layer frame across the network media. Ethernet is now the predominant LAN technology in the world. Ethernet operates in the data link layer and the physical layer.

What are the 7 layers of OSI model in networking?

In the OSI reference model, the communications between a computing system are split into seven different abstraction layers: Physical, Data Link, Network, Transport, Session, Presentation, and Application.

What is the OSI model Why is it important for understanding networking?

It's a model for how applications communicate over the internet. In order to facilitate interoperability between diverse devices and applications, the OSI model describes computing functions into a universal set of rules and standards. The OSI model can be thought of as a universal computer networking language.